Check for updates

Blood 142 (2023) 6445-6447

The 65th ASH Annual Meeting Abstracts

ONLINE PUBLICATION ONLY

636.MYELODYSPLASTIC SYNDROMES-BASIC AND TRANSLATIONAL

Co-Mutational Patterns with *BCOR* Influences Biological Characteristics and Clinical Outcomes of Myeloid Neoplasms

Jeff Aguilar, MDMBA¹, Vikram Dhillon, DO, MBA², Sushmitha Nanja Reddy, MDMBBS³, Lakshmi Bhavani Potluri, MD⁴, Dakshin Padmanabhan, MBBS⁵, Jaroslaw P. Maciejewski, MD, PhD, FACP⁶, Julie Boerner¹, Gregory Dyson, PhD¹, Suresh Kumar Balasubramanian, MD^{1,6}

¹ Karmanos Cancer Institute/Department of Oncology, Wayne State University, Detroit, MI

²Department of Hematology/Oncology, Neal Cancer Center/Houston Methodist Hospital, Houston, TX

³Karmanos Cancer Institute/Department of Oncology, Wayne State University, Novi, MI

⁴Wayne State University/Sinai-Grace Hospital, Farmington Hills, MI

⁵ St Joseph Mercy Oakland (Trinity Health) Hospital, Rochester Hills, MI

⁶Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH

Introduction

BCL6 co-repressor (*BCOR*), a tumor suppressor gene located on chromosome X (locus Xp11.4) is involved in hematopoiesis via non-canonical polycomb repressive complex 1 (PRC1). The prevalence of *BCOR* mutation in myeloid neoplasms (MN) is approximately 5%, and it is also implicated in clonal hematopoiesis. In the 2022 ELN, WHO, and ICC classifications, *BCOR* is categorized as a myelodysplasia-related gene. Mutational patterns include frequent co-occurrence with *DNMT3A* and *RUNX1* in AML and mutual exclusivity with *NPM1* mutations. Although it has been theorized that *BCOR* ^{MT} may cooperate preferentially with certain groups of genes, the prognostic significance of the *BCOR* co-mutational landscape has yet to be fully studied.

Methods

The total cohort (n = 20149) consists of 624 MN patients (169 primary (p) AML, 136 secondary (s) AML, 84 MDS, 34 MDS/MPN, 66 MPN, and 135 with other MN) from Karmanos Cancer Institute, publicly available metanalytic cohort consisting of various sub-studies (Awada et al., 2021; Kewan et al., 2023), and cohorts from open-access cancer genomics resource cBioPortal and AACR GENIE (v13.1) (Cerami et al., 2012; Gao et al., 2013). Clinical and genomic characteristics were reviewed. Chi-square and T-tests were used for analysis of various parameters as described, and Kaplan-Meier and log-rank methods were used to estimate overall survival (OS). The prevalence of $BCOR^{MT}$, co-occurring mutations, and their outcomes were analyzed based on co-mutational patterns.

Results

A total of 745 (3.7%) patients carried *BCOR*^{MT}. Male: Female ratio was 1.48, with a median age of 68 ys.(IQR 59-75). *BCOR*^{MT} showed a trend to be most frequent in pAML compared to other MN (54 vs 46%, p=0.33). *BCOR*^{MT} was less associated with abnormal karyotype vs. *BCOR*^{WT} [41 vs. 51%, p=0.0002]. Median variant allele frequency (VAF) was 45% (IQR 22-69), and most mutations were frameshift (41%) followed by nonsense (27%), and missense (22%). Median OS was not different between *BCOR*^{WT} and *BCOR*^{MT} patients [21.9 vs. 19.6 mo., p=0.089] in the entire cohort.

Oncoprint analysis centered around *BCOR* revealed frequent co-mutations with *RUNX1*, *DNMT3A*, *TET2* and *ASXL1*. As a result, the patients were divided into 10 groups (groups A-J), and the OS was analyzed between groups and compared with *BCOR*^{WT}. Patients with *BCOR/TET2*, *BCOR/RUNX1/TET2*, and *BCOR/ASXL1* (groups G, B, and H resp.) had the lowest median OS with 14.5 mo., 16.7 mo., and 17.4 mo., resp. However, no significant differences in median OS were observed between the compared groups except those involving *BCOR/ASXL1* vs. *BCOR/Others* and *BCOR*^{WT}. *BCOR/ASXL1* patients had significantly lower median OS compared to *BCOR/Others* [17.4 vs. 22.5 mo., p=0.022] and *BCOR*^{WT} [17.4 vs. 21.9 mo., p=0.017].

Further *BCOR*^{MT} and *ASXL1*^{MT} comutational analysis irrespective of other co-occurring mutations, revealed that in those with *BCOR*^{MT}, *ASXL1* co-mutation was seen in 143 (19.2%) patients. *BCOR* and *ASXL1* co-mutation were primarily enriched in primary AML (49%), followed by sAML (25%). Median *BCOR* VAF was higher than *ASXL1* [39 vs. 31%, p<0.0001]. The most

ONLINE PUBLICATION ONLY

associated mutational categories in this subgroup were related to myeloid transcription factors (TF) (*RUNX1*, *CEBPA*; 62%), spliceosome (*SRSF2*, *U2AF1*, *SF3B1*, *ZRSR2*; 22%), and DNA methylation family (*DNMT3A*, *TET2*, *IDH1/2*; 8%). *BCOR*^{MT}/*ASXL1*^{MT}/DNA Methylation mutations had poorer median OS compared to *BCOR*^{MT}/*ASXL1*^{MT}/Spliceosome mutations [9.2 vs. 17.4 mo., p=0.044]. Whereas *BCOR*^{MT}/*ASXL1*^{MT}/Myeloid TF and *BCOR*^{MT}/*ASXL1*^{MT}/Spliceosome mutations had no significant survival difference compared to *BCOR*^{WT}, patients with *BCOR*^{MT}/*ASXL1*^{MT}/DNA Methylation had worse median OS [9.2 vs. 21.9 mo., p=0.007].

Conclusion

This large cohort study confirms common *BCOR* co-mutation patterns and reveals prognostic differences in patients with co-occurring *ASXL1* mutation. We demonstrated *BCOR*^{MT} with *ASXL1*^{MT} without concurrent *RUNX1*^{MT}, *DNMT3A*^{MT}, and *TET2*^{MT} had poorer overall survival. Furthermore, patients with *BCOR*^{MT}, *ASXL1*^{MT}, and concomitant DNA methylation-related gene mutations had worse outcomes compared to those with concomitant spliceosome mutation and *BCOR*^{WT}. Our findings suggest that co-mutational patterns of *BCOR* may further clarify diagnosis and classification schemes, highlighting potential synergies among subcategories of gene mutations and their prognostic value.

Disclosures Maciejewski: Novartis: Honoraria, Speakers Bureau; Alexion: Membership on an entity's Board of Directors or advisory committees; Regeneron: Consultancy, Honoraria; Omeros: Consultancy. **Balasubramanian:** Karyopharm Therapeutics: Other: Drug supply for research; Kura Oncology: Research Funding.

https://doi.org/10.1182/blood-2023-190854

Tanei 1. Deon centered oncoprint with frequent co-indiation groupings

			BCOR RUNX1 DNMT3A				BCOR RUNX1 TET2		BCOR RUNX1 ASXL1		1	BCOR RUNX1			BCOR DNMT3A TET2			BCOR DNMT3A				BCOR TET2		BCOR ASXL1			BCOR + Others							8 0	BCOR									
BCOR	100%	-																													-						-							-
RUNX1	38%	-				-	-														111				88		1111						111		TT									
DNMT3A	29%	-				-	1																		-	μ.,																		
TET2	20%						-		-	<u>i</u> uuu				L.,		UI																												
ASXL1	19%		-				-					-							Ū.	-						-	0001		-														1	
SRSF2	19%		1 100				-	-					-	• 7		00											-		-		-		Ш	111										
NRAS	17%		-	-										-				11		1.1	-	-											-		111				110					
IDH2	16%				-		1						-	1								-	-	1111			1		11		-	1	1	-										
U2AF1	16%	11								Inte		T			-		1111			-	-		-			101			1				1			-								
STAG2	11%	1.1.1		1	1.1.1			1 1		-	1.1			п	1				11	1.1	111	1		1			- 1	()				1 11												
SF3B1	10%		1			-	1 1	1.								-		1			1					1		•	- 1		1			1			-							
BCORL1	10%	0.00	1.1	1.11	1.1	1	1	1	1	100		1			11	•			Ш	1	1.11		- 11	1	UIU	01	111		1			1113		1 1				-			U			
FLT3	10%	1.1.1		1.1	1		1	1.11		1	1	1	11	1	18	1		1	1		1	11	11	18		1				11.1				1.1				-						
KRAS	7%	10000	1	1 1	1						1.1		linn		11			1	н	1	1.1		1.0	1000		1		1	18		1	1.1	1	11	1			117						
IDH1	7%		1		•			•					1	11	1	1	1.1		-11			•	1			L	1	1	11	1	1								-					
TP53	7%		4		1.1		8				1				1		1	1.1						1.1.1			115	11	1			177	1	17				• •	1					
EZH2	7%	1202			1 1			- 11					1	1	1						1983	н		1	1	8				1 1			111	1					1				1000	
PTPN11	5%	1111				1		1			1	1			н	1			1	1	1		1111	HU	1					- 1			1		1		1	1						
WT1	5%	1		1				1			1.1			1		11						Jun			1	1				1			1	10	1			1.1	1		• •			
GATA2	5%	1	1 1	- 1		1	1	1		100	1.1	1	1.	1.		100	1.1				100			1000		11	6	1	1			1	1		1101		1		1		-			

Panel 2. Kaplan-Meier survival curves for BCOR^{MT}/ASXL1^{MT} vs. BCOR^{MT} + Other mutation or BCOR^{WT}

Overall Survival of BCOR^{MT}/ASXL1^{MT} vs. Other mutations or BCOR^{WT}

Session 636